Extensions 1→N→G→Q→1 with N=C8⋊C22 and Q=D5

Direct product G=N×Q with N=C8⋊C22 and Q=D5
dρLabelID
D5×C8⋊C22408+D5xC8:C2^2320,1444

Semidirect products G=N:Q with N=C8⋊C22 and Q=D5
extensionφ:Q→Out NdρLabelID
C8⋊C221D5 = D2018D4φ: D5/C5C2 ⊆ Out C8⋊C22408+C8:C2^2:1D5320,825
C8⋊C222D5 = M4(2).D10φ: D5/C5C2 ⊆ Out C8⋊C22808+C8:C2^2:2D5320,826
C8⋊C223D5 = D20.38D4φ: D5/C5C2 ⊆ Out C8⋊C22808-C8:C2^2:3D5320,828
C8⋊C224D5 = D85D10φ: D5/C5C2 ⊆ Out C8⋊C22808+C8:C2^2:4D5320,1446
C8⋊C225D5 = D86D10φ: D5/C5C2 ⊆ Out C8⋊C22808-C8:C2^2:5D5320,1447
C8⋊C226D5 = SD16⋊D10φ: trivial image808-C8:C2^2:6D5320,1445

Non-split extensions G=N.Q with N=C8⋊C22 and Q=D5
extensionφ:Q→Out NdρLabelID
C8⋊C22.D5 = M4(2).13D10φ: D5/C5C2 ⊆ Out C8⋊C22808-C8:C2^2.D5320,827

׿
×
𝔽